j ﬁ__jf A s
LA-UR -87-1038 Lok =F 070) /

LGS A--23 N8 Ora -250°8 3y 3 OD2E:00 Dy 're J” =08 v G Ca "0°~a 'c” -8 u~ 'ed “:a'es Depari—en. o' E-e:Qy .~ge- COTracr W-7435 ENG-34

IMPROVING PRODGUCTIVITY WITH A CCCTOOL KIT

T-TLE

LA-UR--87-1038

DE87 007507
ALTHTALS. Gany Con. LANSCE

S.BMTTEL TC To be prescnicd aid published 1n proccedings of thic

Spring Mcct.ng of Snftool Users Group
March 30-31 19%7 Santa Barbara Californ.

DISCLAIMER

Im oot e prepared <t 2= ay o7 f & g Smsure) My uf afen.y -fime 1o ed Neater
f. .grmmgrr Neirper 17 e Tricel wigzge fhgerme=r nap A _ mgen.y ihgegcl mr any . fznger
e :ec- AREY «Tr 4mffyily CEPTEN f iTPhied * mtaymEs 5ty 'egai c G™uly _.--.-e-.. LT
Tove TR e ag uraly o pigtemess o gtefyomenn Toary ol aregr P oapperatat promfuu -t
rrweet La_ - ag' - cepreserig tha i Leg weag'd F mir-nge prvaie:y w=gd sig=10 Reie-
€% Ferei™ - gne wpe oFL o eriig! Ponly ' P Rgit o T g Py "*qde “acig -radem:arg
~un_fu_1_rer T oateraeg Jape - maLCuar--y - tentt e ar - My v enl-tag-real re..n-
rerdan ¥ |'--.-r-=|- Ry 1ng l-rqed Nepgr 71 ogr- wgR o 2%y agesey "reref ke wgan
a=l pim-oes T oguer-are capregad herer of .t evgugt:ly umig .y -rgl—-h- roap T omp
1-=eol Nzaten fongr=msgns o ary age~wy rmcre.

Byac.e -g-Ff— -ga-_a -=, B--QTOQ" 08 A - v -3 GIwlr=m@m-r@-g S AT0-QEC B @ vl v @S Ca-i@ TL:E AT cr 8. e

-ep_T gmAat - - a 3 185w e w3 S4A 8. 3 .3 G -e~me=- p_-pOBER

g (S AATOs NAF A B Ay R LepS TR QS F e I8y TR BT TR AL mGE GO 0 e rep Scces 5ot © Deca- e o0

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

IMPROVING PRODUCTIVITY WITH A CCC TOOL KIT

Gary Cont
Los Alamos Naticnal Laboi atory
Los Alamos, New Mexico 87544

Introducuon

In the years since 1ts inroduction, the CCC con’iguration management environment has
established itself as the premiere CM product for projects of all sizes. The functionaluy and
flexibility offered by this system can be employed to provide automated support for essentially
every facet of a program of software (or hardware) configuration management. and., as a
bonus. can sreamline may software development activines. The large number of CCC-based

CM/support/development environments!-10 which have already been developed for numerons
diverse applicanons bear silent witness to the effectiveness and adaptability of the CCC
product.

It must be emphasized. however, that the bare CCC product does not constitute a standalone.
automated, turn-key configuratnon management system. bur simply provides a secure
environment and a comprehensive set of low-level tools from which such a system can be
built. Indeed, the CCC macro language provides high-level structured constructs as well as
access to all of the advanced facilities of the CCC environment, therzby t6 support construction
of automated CM systems which are highly tailored to the implementing organizatnon's
requirements. Ccnsequently. most of the CCC applications which are reported 1n the hiterature
are highly custormzed systems which are specially designed and implemented to accomodate an
organizauon's development and CM environment.

Although customized CCC applications are of general interest from the perspective of general
funcuonality as well as philosthy and strategy of CCC utilization., they are also highly
spec.alized to address the specific environment of the organization for which they are
developed Consequently. systems such as these are of little practica! benefit to other
organizauons for which the operational environment muy be considerably different In
ndditon. lurge custom' zed applicauaons are often written tn a manner which makes them
difficult to modify. thereby presenung significant mnintenance difficulues as the apphicntion
environment evolves

This paper presents a strategy fcr developing CCC apphications bascd around a kernel of
small. rnodular. and cohesive utility macros Such utilines can be employed as building blocks
from which a larger. customizea applicauon car be constructed This approach emphasizes the
identificauon of low-level activiues and operations which are fundamental to the application and
packages them as reusable software components. This reliance on reusability promotes
designs which are conceptually simpler. introduces a level of uniformity and consistency which
racilitates mantenance acuavities, and can make significant contnbutions to reducing the over:l
size of the final CCC: applicauon. In addition, 1t 1s often the case that an apphication which 1
implemented as a hierarchy of small modules can make much more effective use of CCC
features (e g index dat structures) than can a system which 1s monohthically implemented

the utility macros themselves will ransfer easily berween environments and proy=cts. thereby
providing a solid foundation around which subsequent applicatons may be built.

Hints and Guidelines for Developing Utility Macros

For a unlity macro tc be effecuve within a larger applicanon, it must exhibit two general

qual:g 2s* reusability and uniformuty. Consequently, the hints and guidelines identfied in the
following paragraphs are chosen to enhance these features. Reusabiliry, of course, is the
ulomate goal of the unlity macro designer. The degree of reusability of of a utlity macro is
determined primarily by modularity and cohesiveness issues although uniform and
comprehensive users documentation can also contribute sigmificantly. Uniformity issues
generally affect the overall maintainability of a sutte of utility macros and are therefore crucial to
the oveiall robustness of the system.

Design for reusability. Probably the most important aspect of designing a CCC
applicaton 1s to design for reusabulity. This strategy encourages the designer(s) to identify
potential ualty applicauons at the earliest stages of the applicatdon design. and to make a
conscienuacus effort to exploit their reusability ar every suitab.e opporunity This approach
guarantees that your uulities will consutute a consistent set of highly funcuonal units rather than
a collection of haphazardly implemented contrivances

Ensure cohe¢siveness. The most effective utility macros are those that perform a single.
well detined. function. rather than a collecuon of logically unrelated or disjuint acuons
Because of treir ssmphicity, cohesive macros are conceptuaily easier to design, as well as
significantly zasier (o test and debug. Generally. a macro which exhibits a high level of
cohesion will be us=ful in a wider variety of situations than will a less cohesive counterpart
Addiztorally. a cohesive macro 1s much less likely to be affected by changes in the applicaticn
eav.ronmeiit than 1s a more complex, less cohesive implementation.

Eliminate global references. Global references complicate macro interfaces and generally
reduce *he robustness of your applications. Never use global references to communicate
petween macros. use macro parameters instead. This approach improves the understandability
and reliability of your macros and fosters a level of generality that makes your utilities far ensier
to reuse Also, restnct the scope of internal varisbles and temporary texts so that they are not
visible outside the atiliry macro In so doing. you eliminate the possibility of problems with
unexpected side effects

Provide adequate documentation. Regardless of the cohesiveness and modularity
attributes of a utility macio. if 1t 1s impossible to detennine what 1t 1s supposed to do and/or
how to 1rrerface to it. no one wall use it. In addition. iIf maintenance-level documentation 15
missing or inadcquate. it 15 unlikely that the macro will be updeted as requiremants or the
operauonal environment change Documentation 1s particularly important in the CCC
environment becsuse of the exirerne complexity of the CCC macro language. This high level
of complexity can make even a short macro very difficult to understand from the source code
alone Itis thecefore recommended that two levels of inline documentation be provided for
every macro uniform. comprehensive users’ documentauon and detailed annotauon of the
source code. Users documentation 1s most effective which is present at the beginning of the
macro. It should provide a brief statement of th= put,ose of the macro. a description of the
parameters (inputs and outputs), a hst of assumptions and hmitations which constrain the
applicability or nc:remioral environment of the macro and an example of how the macro i
invoked /. standard remplate may be employed to guarantee the uniformity and completeness
of this documentation Mainienance documentation should be interspersed throughout the
source code and should describe lozal vanebles as well rs the various operations being

performed. Mawntenance documentari~n should be included at least every three to five lines--
more often iIf exremely complex operanons such as muluple level symbol subsutunens are
being performed.

Use a consistent style. The general level of readability of your macros contributes
significantly to their ulumate success or failure. Apphcanon of simple style rules will decrease
the level of effort required 1o read and understand tnese modules. thereby making them easier
to reuse and maintain. Define a simpic -et of standards for coding and documentauon style.
Employ meaningful names throughout and be consistent between macros. In particular. use
symbolic names for parameters rather than the less meaningful &1. &2. erc. Establish rules for
using upper and lower case within vour macros. Dacide on an indentanon scheme for
structured corstructs and suck with 1. Partinon your macros into logical units which segregar2
vanable declarauons, initalizations, and cleanup operanens from the funcoenal po.uons of th2
macro Ensuring uniformity through the use of the e anc other simple swyle convenuens 1s 2i
imvestment 1n the Jongevity, robustness and friendliness of your utlity software

A Typical Uuliry Macro Tool Set

Many critena exist for determuning the contents of your macro tool kit Experiznce indicates.
however, that satisfaction of either of tne following two condinons 1< generally suificient 1o
bestow utility status 1pon a macro’ (a) the macro has a wide audience of users any of whom
will make occasional use of it. and (b) the macro has a restricted audience but is invoked
frequendy therein. The frrmer case usually corresponds to a macro which extends the overali
functionality of the CCC environment and therefore accrues a large number of potennal i sers
The secord class of macro often constitutes a set of automated procedures employed by a
parucular class or users (e £ data base administrators or software mez 1agers) to perform
repeatedly a parucular maintenance function

The following paragraphs describe the functionality of selectec uulity macros +.hich have been

implemented by the author. These macros have been chosen 1o demonstrate the wide vaaety or
applicauons which can be addressed by a suite of small. independent unlives Included among
these examples are utulines of each general class

Within the class of macros which extend the overall funcuonality of the CCC environment are
the following uulities: SIMPORT and SEXPORT 10 provide powerful, syntax-directed
import and export funcuons, EDIT_HOST a simple. yet tlexible. ut.:.ty which permnits CCC-
resident texts to be edited with a host editor, INITIATE_LOGIN which zutomar. -ally
executes a hierarchy of user- and manager-defined login reats 2t the ume ac which a user logs
into CCC, and BATCH. a utility which permits CCC macros to be executed in batch mode
from within CCC. Within the class of macros which automate mintenence ncticines are
AUTHORIZE_USER, a uulity which automates the process of user authenzation as il as
traits and access control definition. and ENABLE_DSM. a macro which sappons the
structured ma,ntenance of the data structure macros which conipr.se a CCC applicauon

One of the most common operauons performed dunng any CCC session involves the impeaicr
export of modules hetween the host file system and tne CCC data base Often 1t 1 necessary
move large collecuons of modules with a single wildcarded IMPORT or EXPORT con.mand
Unfortunately, these CCC commands do not support a very sophisticated algorubm for
interpreung wildcarded specifications so. except in the simplest of cases, the operution nusy 1+
with a run-time error Consider. for example. an export operation which seeks tv move all
CCC texts which sausfy the wildcard specification */PAS from the current data struc ture 1o the
VMS directory | DESTINATIONI In .rder to perform this operation _he follow g CC ¢
command nugh! he used

EXPORT FROM==/PAS TO=[.DESTINATION]*.* OPTION=READ

Shortly after executing this command, however. the user is nodfied by the CCC run ume
system that the desunanon specificadon cannot be nterpreted and the command aborts.
Indeed. the only way to succeed in this endeavor 1s to i1ssue the command:

EXPORT FROM==/PAS TO=~=~ OPTION=READ

and to ensure that [. DESTINATION] 1s the default VMS directory (1 e the VMS directcry
from which you logged into CCCy The IMPORT command exhibits similar problems 1n
interpreung complex wildcard specificaucns. Neediess to say, this feature can make moving
large numbers of modules between the host file system and the CCC data base an extremely
tedious operation which requires mulaople login/logout sequences

The syntax-directed import and export uulity macros SIMPORT/DSM and
SEXPORT/DSM contain the necessary iatelligence respecavely to export CCC texts to a
nondefault VMS directory, or to impor 1.les from a nondefault dirsctory. Using SEXPORT
the above operauon is performed as tollows-

SEXPORT =/PAS [.DESTINATION] READ

SEXPORT causes all CCC texts whicn martch the specification provided in the first paramerer
to be exported to the VMS directory specified in the second parameter. The desanauon
directory specification may opdonally include a device specification (e g
DUAOQ:[CORT.DSMS])): the unlity macro autornacicaily validates the existence of the
destinauon and checks for user access thereto. Norte that SEXPORT forces the names an-
extensions of the exported files to be identical to the'r CCC-res'dent counterparts.
Additionally, the SEXPORT interface 1s specified 11 a nanner which 1s consistent with th2
EXPORT command. thereby enhancing uniforr.aty and simphfying human interacuons.
SEXPORT therefore provides the funcuonalit, necessary to extend the existing CCC
EXPORT command to process the more general case for which a nondefault VMS directory
specificanion is provided as the export desuaation.

Sinular functionality 1s provided for the SIMPORT utility. A typical invocauon of this macro
is shown below.

SIMPORT USER _DISK:[.DESTINATION]= FOR CCCSYSTEM CONFIG NEW NO

where the first parameter specifies the VMS files to be impored, the second parameter indicates
the CCC data swucture which 1s the desunaton. the third parameter is the import opiion and the
last parameter bypasses prompung Similar assumptions 1o above are made concerning file
names and extensions Once agan. the interface 1s defined to be consistent with the CCC
IMPORT command As such. the SIMPORT and SEXPORT uulinies provide a logically

consistent set of commands which extend the capabilities of the correspending nauve CCC
commands

EDIT_HOST/DSM 15 a uulity macro application which permits a CCC user to edit a CCC-
resident text with a hos, operating system editor without the necessity of performing explicit
import and export operations EDIT_HOST accepts the specification of the CCC text to be
edited as its only paruneter, automaucally expons the text to the host operatng system and
stants an interactive HOST editing session using a preselecied host editor. In the event that the
text to be edited does not yet exist within CCC, 1t 1s automatcally created At the conclusion of
the editing session, EDI'I)_II()ST automatically reimporis the edited rext. updates the

appropriate change audinng informaanon, and deletes the host-resident version of the edited
text.

Thas utility is an example of an exuemely simple applicaton which provides enormous
functionality to the user community It allows ordinary vsers to employ powerful and familiar
host resident screer.-onented editors 1n their daily work rather than being forced to use the CCC
Line editor. The interface effectivaly hides the intermediate import, export and file deletion
operations, thereby simplifying human interactions. A simple enhancement will permmut a user
to specify the editor of choice rather than use the prese:ected editor specified by
EDIT_HOST.

The BATCH/DSM unlity macro 1s an example of a more complex application which
significantiy increases the flexibility of the CCC environment. This utility permits a user
initiate the batch execunon of a CCC macro from within a CCC session. Recall that the
unenhanced CCC environment supports two methods for accessing host operating systemn
batch queues. The first mode utlizes the CCCBATCH facility to execute CCC macros in batch
mode. However, this facility can only be invoked from the host operating system: it 1s
inaccessible from within a CCC session. The second mode employs the HOST facility to
1nitiate a batch job from within a CCC session In this case. however, the batch job mast
consist of a host command file (e g. a collecnon of DCL commandsi rather than a CCC macro
As such, the means for executing a CCC macro in barch mode from a CCC session does not
£X1SL.

The BATCH uuliry was implemented to address thiz deficiency. Itaccepts as a parameter the
name of the CCC text to be executed 1n batch mode and uses the CCC HOST AUTOMATIC
command 1n conjuncuon with CCCBATCH 1o submit the job directly from the CCC session.
Otner parameters provided 1o the utlity specify the data base in which the batch macro chall
execute, as well as the host batch queue to which the job is subminted. Standard defaults are
specified within the unlity so thatf the data base parameter 1s omutted. the job executes witnir
the dara base from which 1t1s submitted. Ancther default is defined 1o handle the case in which
the batch queue 1s ornitted from the parameter list.

This unlity provides a range of options and level of convemence to the ordinary user that can
significantly sreamline a CCC session. Long, noncnitical jobs can easily be proce--~d 1n
background mode without undue interruptions to the interactive session. [t alzo mak < feasible
an enare range of more esoreric applications. ¢ g the BATCH uulity provides a viabiz
mechanism for communicaung between data bases.

The last of the globally useful unlities to be discussed 1n this monograph 1s a simple system for
implementng a VMS-like login facility. One of the very useful featn:-es of the VMS operating
sy<tem is the capahility to execute automaucally a hierarchy of “login™ files at the ime that a
user logs inte the system. This facility generally executes a global login file {provided by

sy stem managernent personnel) first. followed by the execution of a (acally-defined file The
logia files are used to define 2ntities which are generally useful throughout the user session
The global file 1s usually employed to make sys=:*m-wide definitions. whereas the local file i~
employed further to custormize the user environment.

The CCC environment can benefi: significantly from a similar facility Indeed. because a
typical CCC user may be subondinate to many levels of managers. a factlity which suppots an
ext:nded hierarchy of login texts 13 probably ap nate. Ungonunmcly. the CCC system s
configured to permit only one level ~f login text to be 2xecuted. The login text. in addinon.
must be located within the user's login data structure, thereby virtually eliminating the
feasibility of providing manager detinitions therein

In order 1o remedy this situauon. th= author has implemented utility macros to define a local
LOGIN facility which automarically executes a hierarchy (of virtually unlimited depth) of
manager- and user-supplied login texts ar user login nme. Each text resides within the <cope of
the defining user or manager, and outside the scope of any subordinates. Consequently. each
user or manager can configure their particular login text in a smaightforward manner withoat
encroaching on anyone else’s domain. Each login text 1s given the standard name
LOGIN/DSM and resides 1n the login data structure of the defining user or manager.

Thne uulity macro START_LOGIN_SEQUENCE/DSM 1s physically copied into the login
darta structure of eacn user who is autnonzed 1o access the CCC data base. The
SETENVIRONMENT command is employed to set the login macre for each user to thus DSM
As such, upon imtianng a CCC login sequence, the user's local

START_LOGIN SEQUENCE 15 autemaucally evecuted. Th.s recursive data structure
macro, which 1s idenucal for each user. automancally searches for all LOGIN/DSM macros
which are present 1n the users login data structure as well as 1n any superordinate data
structures. It then automatically executes the various LOGIN/DSM s 1n order of decreasing
scope. In this manner. any LOGIN/DSM macro which is resident ar the DBA level 1s
executed first. followed 1n order by LOCGIN/DSM's at the SYSTEM. CONFIGURATION
and successive MODULE l:vels ending with execuncen of the LOGIN/DSM wh:ch res.des
within the user’s log.n dara strucrure.

The definiuuns made duning the login sequence gen.raliv remair in force for the daraton of tne
CCC session The potennal uses for this facility are extensive and include provid.ng short
names for iocal macros, saimplifying data base navigadnon. providing local defaults for symbols
or macro parameters. simplifying access controls and producing reports at login ume. Use of
utlity macros to implement tnis facility provides a simple, common 1nterface. uniform
fincuonahity and ease of ma:ntenance In 2ddinen it permits the vanous login texts to be

ph: 1cally 1solated and dismbuted throughout the data base hierarch, 1n a manner which
reflects their scope of effect

Among the class of system maintenance ut:lity macros. wo a-e discussed below. The aulity
macro DEFINE_USER/DSM was developed to autemate and to consolidate the operations
wmich must be performed 1n authonz.ng or removing a CCC user. The macro provides a
prompled interface whicn requests 1nformation such as the name and class of the cser, whetrer
the user is to be added or deleted. the user s login data sucture. and d=fa.it access controls
and data structure traits associated therewith. The unlity then executes the appropnate CCC
commands to perform the authenzauon operatiors as well as to configure the users
environment (.2 place a derault LOGIN/DSM i nd a copy of
START_LOGIN_SEQUENCE/DSM 1n the login data structure) As such. th.s uulity
constiwates a high-level facility wnuch dramaucally improves the efficiency and relizbiluty of
performing user authorizaton operauons.

ENABLE_DSM/DSM 1s the last utility macro to be discussed 'n the context of management
aids This utlity pro~ides a facility for conirolling the morphology and accessibiluy of data
stnicture macros which of necessiry must nave a high ~1sibility In general. most CCC
applications arc implemented a< collection~ of data structare macros which reside at a high ieve:
ioften at the data base level) of t.ie CCC duta base As such, these macros are visiole (for
execution) to all subordinate users Although this high visibuity 1s desiregble from the aspect
of executon accessibility. 1t often causes problems when one or more of the mecros 1s under
development or madificator,

For example. prudent development practices dictate that vour data structure macros have the
ARCHIVE=YLS traut thereby ro guarantee that a change history be muintuned dunng
development However. initiauon of a macro with maluple archived revicions can he tedio.nl:

slow, thereby resulting in a significant degradation of execution performance. Furthermore,
even after the macro has stabilized and is no longer undergoing extensive changes, there may
exist excellent reasons for retaining th.e archived versions.

Other problems may result from providing extensive inline documentation (as recommended in
the preceding section) for macro applications. The CCC macro language executes in an
interpreted mode, so extensive amounts of nonexecutable inline documentation may also
degrade performance.

Finally, it is often necessary keep an old version in service while an existing macro is
modified, or to hide a newly developed macro from the user community until such time as
verification and validation is completed. These requirements argue for a separate repository for
uncertified macros.

ENABLE_DSM supports the notion of separate repositories for uncertified and production-
level macros. It presupposes the existence of a CCC data structure in which macros are
developed and maintained and a separate partition from which they can be executed. The
development/maintenance partition is defined in a manner such that it is not visible to any
subordinate user. As such there is no danger that any macro which resides therein can be
executed by the user community. This partition is configured with the appropriate traits (e.g.
archiving is activated, optionally compression and/or encryption are enabled) to support
development and maintenance activities.

The execution partition is located such that it is visible by the appropriate segments of the user
community. In addition, it is configured to support rapid execution (e.g. no archiving,
compression or encryption). The ENABLE_DSM utility is employed to promote macros
from the development partition to the execution partition and to perform simple optimizations to
improve execution performance. The first priority of the utility is to copy the specified
macro(s) from the development partition into the execution partition. This provides a version
of the macro in the execution partition which has the appropriate traits for fast initiation and
execution. The second act of the utility is to delete inline documentation from the macro which
is resident in the execution partition, thereby to further improve its execution performance.

The result of these operations is to provide a version of the macro in the execution partition
which is configured for rapid execution yet to retain the fully documented, multi-revision
version in the development partition. Fusthermore, subsequent modifications can be made
within the development partition without disturbing the executing version. Upon completion of
the revisions, the new version can be promoted to the execution partition with a minimum of
disruption to the operaticnal environment. In this manner, the project remains virtually
undisturbed and enhancements/bug fixes can be integrated in a simple, structured manner.

Conclusions

In the preceding sections we have attempted to demonstrate the wide range ot functionality,
fiexibility and versatility which are available through the use of utility macros. By
implementing these constructs as simple building blocks from which complex applications can
be built, new levels of reliability and maintainability can be easily achieved at a relatively small
incremental cost. Often, as in the case of the BATCH utility dcscribed above, the higher level
of abstraction which is obtained through utility packaging results in innovative new
applications. In any case, establishment of a suite of robust, cohesive tools with uniform and
consistent interfaces will significantly increase overall productivity in implementing new
applications and perfonning daiiy operatiuns.

No attempt has been made to describe a comprehensive set of utility macros. Our purpose has
been merely to provide a sampling of the wide variety of useful applications that can be
implemented in this manner. Indeed, the collection of utilitties which should be implemented to
support a particular environment depends strongly on many factors including the character of
the application, experience and requirements of the user community, and the general level of
familiarity of the developers with the CCC environment. Only one generalization can safely be
muade: creation of an effective CCC tool kit will improve the flexibility and effectiveness of
your applications as well as the productivity of your project members.

10.

References

. "Document Management", D. Cheney, Proc. Softool Users' Group, (Santa Barbara,

September, 1984).

"Configuration Management for Mission-Critical Software: The Los Alamos Solution", G.
Cort and D. M. Barrus, Proc. Softool Users’ Group, (Santa Barbara, September,
1984).

"The Los Alamos Automated Configuration Accounting System: A Proposal”, G. Cort and
J. A. Goldstone, Proc. Softool Users' Group, (Dallas, March, 1985).

"The Los Alamos Hybrid Environment: An Integrated Development/Configuration

Management Environmen: ", G. Cort in Conference on Software Tools, J. Manning,
ed. (IEEE Computer Society Press, New York, 1985).

"A Development Methodology for Scientific Software", G. Cort, et al , IEEE Trans
Nuclear Science, NS-32, 1439, (1985).

"The Los Alamos Tool Oriented Software Development System”, G. Cort and R. O.
Nelson,, Proceedings of the Fall U. 8. DECUS Symposium, (DECUS, Anaheim,
1985).

“The Los Alamos Software Development Tools", G. Cort and R. O. Nelson,, Proceedings
of the Fall U. S. DECUS Symposium, (DECUS, Anaheim, 1985).

"A Menu Method of Accessing CCC", D. Hahn, Proc. Softool Users' Group, (Culver
City, April 1986).

"CCC/MVS ISPF Turnkey Application”, L. Stanton, Proc. Softool Users' Group, (Culver
City, April 1986).

"A Modular, Automated Software Testing Environment”, G. Cort and J. A. Goldstone,
Proc. Softool Users' Group, (Culver City, April 1986).

